
COSC2320: Data Structures and Algorithms

HW4: Time Complexity of Union and Intersection of Sets

1 Introduction

The purpose of this homework is to estimate time complexity T (n) (# of operations, not clock time) to

compute intersection and union of sets, counting operations. In our case the sets contain words. Since words

can be repeated in input files (i.e. bags as input) your program should count the number of occurrences (i.e.

sets as output).

You will write a C++ program to estimate time complexity of union and intersection of two sets. You

are expected to count number of computations to estimate time T (n), find the big O() function (with its two

constants) and display numbers in tabular form.

2 Input

The input is one script file, as in previous homeworks. The script file will ask you to read 2 or more input

files into doubly linked lists and operate on them. In order to simplify the problem, the formatting of the

original files will be discarded.

Additional aspects about input: All uppercase characters must be changed to lower case. The input files

will contain no punctuation symbols. Another important detail is that input files might be empty, since the

empty set (∅) is a valid set.

union(L1,L2,L3)

will find the union of sets L1 and L2 and store the result in L3.

intersection(L1,L2,L3)

will find the intersection of sets L1 and L2 and store the result in L3.

The script will ask you to perform one operation between sets (either union or intersection). The time

required for this operation will be recorded.

3 Program and output specification

The main program should be called ”time”. You can use the Command Line Parser that is provided in the

TA’s homepage.

Syntax:

time script=input.script;result=out.txt



Notice that we are explicitly specifying that the output of the program should be written to the file named

by result.

When computing the union or intersection of two linked lists you must produce one occurrence of each

word in the result. In summary, the output is a set.

You are required to come up with T (n) and big O() AFTER you read/load the lists, but BEFORE the

lists are sorted and the overall process is done and show that this estimate is bounded by O() after execution.

Since T (n) should be estimated using ”worst case scenario” conditions, T (n) should always be larger than

the actual time required. The f(n) function must be one of the fundamental time functions (just one term

on n). Depending on how lists are sorted T (n) can be O(n2) (default) or O(nlog2(n)) (optional). The

tighter the bound and their estimation the better. You should consider worst case for O(). It is expected each

student will have slightly different T(n) functions and different c and n0 values, but the O() bounds must

hold.

For the estimate of the actual T (n) you can count operations simply by incrementing a counter variable

each time an operation (assignments/comparisons) is performed (the counter could be a global variable).

Use the rule of sums and rule of products to come up with the total time function for the estimated T (n). To

find the big O(g(n)) you need to find c, n0. It is a requirement that your c, n0 values be as small as possible,

but it is not necessary that n0 ≤ 2.

Sorting: You can optionally use one efficient sort algorithm of your choice (mergesort or quicksort). You

could sort them using linked lists or, alternatively, use an intermediate array to store the words temporar-

ily. This is acceptable because you know the exact size of the list and this allows the allocation of space

dynamically for the array.

4 Examples

You are required to produce an output table formatted as follows (in CSV format, values separated by

commas).

input1.script

read(A,’A.txt’)

read(B,’B.txt’)

union(A,B,C)

result1.txt

L1 L2 ------O(g(n))------

size size operation T(n) estimate T(n) actual c n0 g(n)=nˆ2

20 30 union 220 200 1 1 900

input2.script

read(A,’A.txt’)

read(B,’B.txt’)

intersection(A,B,C)

result2.txt

L1 L2 ------O(g(n))------

size size operation T(n) estimate T(n) actual c n0 g(n)=nˆ2

10 20 intersection 100 98 1 1 100



5 Requirements

• Your program must be able to create and handle multiple doubly linked lists.

• You should sort AFTER reading the lists. You should not insert in order.

• You should estimate T (n) and O(g(n)) AFTER you read the input lists (with possibly repeated

words), but BEFORE you sort them.

• Your program should be able to handle lists of thousands of words. There is no upper limit to the size

of the input files.

• You can compute union/intersection recursively or non-recursively. The result should be correct in

either case. It is preferable you compute these operation on sorted versions of the lists. Alternatively,

you can compute the set operations with nested loops.

• Otional: as an option you can sort later with arrays with a more efficient O(nlog
2
(n)) algorithm

to count words and eliminate duplicates. Such algorithm can allocate the exact n without wasting

memory. In the end, results from intersection/union should be stored on a doubly linked list.

• Arrays are allowed to perform sorting efficiently, after the number of words is known. Arrays are not

allowed to read/load the lists (initially). Arrays are not allowed to display lists. In other words, arrays

can only be used for sorting efficiently.

• You are allowed to use loops and iterators when reading and writing from a file, in order to recycle

the code you used in the previous homework set. However you must create a recursive search method

and a recursive list traversing method. (Hint: Look at the example in the book where you are shown

how to print a list backwards)

• You must create a log file that records the length of each linked list after each operation. This log file

should also be used to output any warnings and errors you might encounter.

• The program should not halt when encountering errors in the script. It should just send a message to

the log file and continue with the next line. The only error that is unrecoverable is a missing script

file, or a missing argument in the command line.

• Do not use the STL library. Your program should write error messages to the screen. Your program

should not crash, halt unexpectedly or produce unhandled exceptions. Consider empty input, zeroes

and inconsistent information. Each exception will be -10.

• Test cases. Your program will be tested with 10 test scripts, going from easy to difficult. You can

assume 80% of test cases will be clean, valid input files. If your program fails an easy test script

10-20 points will be deducted. A medium difficulty test case is 10 points off. Difficult cases with

specific input issues or complex algorithmic aspects are worth 5 points.

• A program not submitted by the deadline is zero points. A non-working program is worth 10 points.

A program that does some computations correctly, but fails several test cases (especially the easy

ones) is worth 50 points. Only programs that work correctly with most input files that produce correct

results will get a score of 80 or higher. In general, correctness is more important than speed.


