COSC 2320: Data Structures
Homework 4: Sorting and Searching

Deadline: Nov. 8, 2014
1. INTRODUCTION

In this homework you are asked to create a C++ program that implements a primitive spell-
checker, using efficient sorting and searching algorithms.

In essence a spell checker works by comparing all the words in a document to words in a
“dictionary”. If a word is not found in the dictionary, the program assumes that it is a misspelling.
In order to efficiently spell check a document you need to have your dictionary in a sorted array,
and you need an efficient way of determining if a word can be found or not in the dictionary
array.

2. INPUT & OUTPUT

The input of this program is two files, whose names are given in the command-line arguments.
The first file provided will be the dictionary file, and the second file will be the file in which you
will check the spelling. Both files come with a list of words separated by spaces or carriage
returns and they both can have arbitrary number of words. Characters other than letters and
numbers will not be added into the files.

You will first read the dictionary file into a linked list. Once the file is read and the number of
words is known, you should allocate an array and use it to sort your dictionary file if it is not
already sorted (this could be verified while you move it to the array). If there are duplicate words,
only one instance of the word should be kept. You should also delete the original list to free
memory.

Then the file to be checked will be loaded into memory in the same way as in previous
homework. You should use an efficient search algorithm (Binary Search or AVL Binary Search
Trees) to determine if each word of the input file is present in the dictionary. You should produce
a listin ALPHABETICAL ORDER with all the words that are misspelled in the document, one
word per line. If there are misspelled words appeared in the file more than once, only one
instance will be shown in the misspelled list. The spell checker is case-insensitive.

3. PROGRAM AND ARGUMENT SPECIFICATION

The main program should be called “spellchecker”. The program should be able to take the first
argument as the dictionary file name and the second argument as the name of the file to be
checked.

The call syntax will be like:

spellchecker.exe dict.txt doc.txt

Note that the file names will not necessarily be the same every time, so your program shouldn’t
have those file names hard coded.

All the words in the dictionary file will be in lower case.



4, A SAMPLE TEST CASE
dict.txt:

apple air zoo kite hour picture
friend city

game my

table dinner party

input.txt:

Apples hour picture frined table
Dinner

Program call:

spellchecker.exe dict.txt input.txt
Output:

Apples
frined

5. SUBMISSION REQUIREMENTS

Your submission should be well tested before submitting under Visual Studio 2010 or later
versions. You can get a copy of Visual Studio from the UH website using your cougarnet
username and password. The URL is http://uh.edu/infotech/php/software/list.php.

We use the UH blackboard system to collect your homework submissions. Before you submit
your homework, please make sure to put everything in a ZIP file named in the form of
LastName_PeopleSoftiD_HWa4.zip.

For example: Zhang_1234567 HWa4.zip

The instructions about how to use the blackboard system can be found on the TA’s webpage for
this course: http://www?2.cs.uh.edu/~yzhang/cosc2320-f2014/

6. GRADING
The maximum grade for this homework is 100.

You will get 15 pts for submitting the homework in time, 10 pts if your program can be
successfully compiled.

We will test your program with 5 easy test cases and 5 hard test cases. Each easy test case will
worth 10 pts, and each of the hard ones will worth 5 pts.

When testing, we will compare your program’s output with the standard output. Therefore do not
print any content on the screen unless required, avoid any prompt information like “Please
enter the input file name:”, “The elements in the doubly linked list are:” etc.

Last but not least, no cheating or plagiarism will be tolerated in any graded submissions.


http://uh.edu/infotech/php/software/list.php
http://www2.cs.uh.edu/~yzhang/cosc2320-f2014/

